Magnetic induction measurements and identification of the permeability of Magneto-Rheological Elastomers using finite element simulations

نویسندگان

  • Gerlind Schubert
  • Philip Harrison
چکیده

The isotropic and anisotropic magnetic permeability of Magneto-Rheological Elastomers (MREs) is identified using a simple inverse modelling approach. This involves measuring the magnetic flux density and attractive force occurring between magnets, when MRE specimens are placed in between the magnets. Tests were conducted using isotropic MREs with 10–40% and for anisotropic MREs with 10–30%, particle volume concentration. Magnetic permeabilities were then identified through inverse modelling, by simulating the system using commercially available multi-physics finite element software. As expected, the effective permeability of isotropic MREs was found to be scalar-valued; increasing with increasing particle volume concentration (from about 1.6 at 10% to 3.7 at 30% particle volume concentration). The magnetic permeability of transversely isotropic MRE was itself found to be transversely isotropic, with permeabilities in the direction of particle chain alignment from 1.6 at 10% to 4.45 at 30%, which is up to 1.07–1.25 times higher than in the transverse directions. Results of this investigation are demonstrated to show good agreement with those reported in the literature. & 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equi-biaxial tension tests on magneto-rheological elastomers

A bespoke test rig has been designed to facilitate testing of magneto-rheological (MR) elastomers (MREs) under equi-biaxial tension using a standard universal test machine. Tests were performed up to 10% strain on both isotropic and anisotropic MREs with and without the application of an external magnetic field. Assumptions regarding the material’s response were used to analyse stress–strain re...

متن کامل

Energy conversion in magneto-rheological elastomers

Magneto-rheological (MR) elastomers contain micro-/nano-sized ferromagnetic particles dispersed in a soft elastomer matrix, and their rheological properties (storage and loss moduli) exhibit a significant dependence on the application of a magnetic field (namely MR effect). Conversely, it is reported in this work that this multiphysics coupling is associated with an inverse effect (i.e. the dep...

متن کامل

Performance Evaluation of Magnetorheological Damper Valve Configurations Using Finite Element Method

The main purpose of this paper is to study various configurations of a magnetorheological (MR) damper valve and to evaluate their performance indices typically dynamic range, valve ratio, inductive time constant and pressure drop. It is known that these performance indices (PI) of the damper depend upon the magnetic circuit design of the valve. Hence, nine valve configurations are considered fo...

متن کامل

On the stiffening effect of magneto-rheological elastomers

Magneto-rheological elastomers (MREs), a class of polymer-based composites with dispersed magnetic filler particles, are known for their tunable stiffness. The magnetic-field-induced stiffening effect, namely the magneto-rheological (MR) effect, is often attributed to the magnetic dipolar interaction. The direct attraction between two magnetic dipoles could increase the shear modulus of the mat...

متن کامل

Finite Element Method Application in Analyzing Magnetic Fields of High Current Bus Duct

The goal of paper is to present the magnetic field calculations in high current bus ducts. Finiteelement method is used to do this. Bus ducts under study have figure such as circle area. Thecalculations will be using mathematical relations, meshed geometric shape and analyzing them.Geometric mean will help us to determine the value of magnetic field. COMSOL software is appliedfor simulation stu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015